Please rotate your device to landscape mode for a better experience.
Login

Chicago Wolves
GP: 0 | W: 0 | L: 0
GF: 0 | GA: 0 | PP%: 0% | PK%: 0%
GM : Camil Costandi | Morale : 27 | Team Overall : 59

Team Leaders

Team Stats
Team Info

General ManagerCamil Costandi
CoachStephane Robidas
DivisionMarcel Dionne
ConferenceConference 1
CaptainHudson Fasching
Assistant #1
Assistant #2Vasily Podkolzin


Arena Info

Capacity3,000
Attendance
Season Tickets300


Roster Info

Pro Team22
Farm Team20
Contract Limit42 / 63
Prospects26


Team History

This Season0-0
History179-182-28 (0.460%)
Playoff Appearances1
Playoff Record (W-L)5 - 4 (0.556%)
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Valtteri Puustinen0XX100.007142957862599074317459652549496775640252775,000$
2Hudson Fasching (C)0X100.007344956576627564446458707561626570620281775,000$
3Vasily Podkolzin (A)0X100.0099478779695762673763576425595963736202321,000,000$
4Mitchell Stephens0X100.006141947269538665795459742556566462610272775,000$
5Pavol Regenda0XX100.007780716580747862505564656145456581600241775,000$
6Ivan Miroshnichenko (R)0X100.008945907869627166256559592545456566600202950,000$
7Jackson Cates0XX100.007770926370778257715158645544446277580261775,000$
8Lukas Rousek0XX100.006140997063578461266155612545456173580251775,000$
9William Lockwood0X100.008691826965516064455455692547476184580261775,000$
10Wilmer Skoog0X100.007873915973616260754768656544446472580241775,000$
11Jordan Harris0X100.0065418870677278622552488225595962686502311,400,000$
12Philippe Myers0X100.007779717879748053254842673960605680630271775,000$
13Cavan Fitzgerald0X100.007672856572606256254253665054545981590271775,000$
14Tyler Kleven (R)0X100.007677756877636751254544614044445583580221916,667$
15Santtu Kinnunen0X100.006860886560778450254341583944445473560251775,000$
16Daniil Chayka (R)0X100.007671886571697645253539603744445160560211902,500$
17David Reinbacher (R)0X100.008077876777505053253953645044445868560193918,333$
18Dean Stewart0X100.007775806575606446253640613844445172550261775,000$
Scratches
TEAM AVERAGE100.00766387697163735938525365404949607359
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Sebastian Cossa (R)0100.00594759886466586468663044446150610212863,333$
2Drew Commesso (R)0100.00594759716466586468663044446174600212925,000$
Scratches
1Nico Daws0100.00615655846556696265617848486278610232812,500$
2Devin Cooley0100.00485063824748505448483044444923510272775,000$
TEAM AVERAGE100.0057505981605959616260424545585658
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Stephane Robidas6161616157541CAN47160,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Cavan FitzgeraldChicago Wolves (QUE)D271996-08-23USANo196 Lbs6 ft1NoNoN/ANoNo12024-09-04FalseFalsePro & Farm775,000$0$0$No---------------------------Link / NHL Link
Daniil ChaykaChicago Wolves (QUE)D212002-10-22RUSYes187 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm902,500$0$0$No---------------------------Link
David ReinbacherChicago Wolves (QUE)D192004-10-25AUSYes209 Lbs6 ft3NoNoProspectNoNo32024-06-21FalseFalsePro & Farm918,333$0$0$No918,333$918,333$-------918,333$918,333$-------NoNo-------Link
Dean StewartChicago Wolves (QUE)D261998-06-12MANNo201 Lbs6 ft2NoNoN/ANoNo12024-09-04FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Devin CooleyChicago Wolves (QUE)G271997-05-24USANo189 Lbs6 ft5NoNoN/ANoNo22024-07-02FalseFalsePro & Farm775,000$0$0$No775,000$--------775,000$--------No--------Link / NHL Link
Drew CommessoChicago Wolves (QUE)G212002-07-19USAYes181 Lbs6 ft2NoNoProspectNoNo22024-06-21FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$925,000$-------No--------Link
Hudson FaschingChicago Wolves (QUE)RW281995-07-28USANo209 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm775,000$0$0$No---------------------------Link / NHL Link
Ivan MiroshnichenkoChicago Wolves (QUE)LW202004-02-04RUSYes185 Lbs6 ft1NoNoProspectNoNo22024-06-21FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$950,000$-------No--------Link
Jackson CatesChicago Wolves (QUE)C/LW261997-09-26USANo190 Lbs6 ft0NoNoN/ANoNo12024-09-04FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Jordan HarrisChicago Wolves (QUE)D232000-07-07USANo189 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,400,000$0$0$No---------------------------Link
Lukas RousekChicago Wolves (QUE)LW/RW251999-04-20CZENo174 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Mitchell StephensChicago Wolves (QUE)C271997-02-05ONTNo194 Lbs5 ft11NoNoN/ANoNo22024-07-02FalseFalsePro & Farm775,000$0$0$No775,000$--------775,000$--------No--------Link / NHL Link
Nico DawsChicago Wolves (QUE)G232000-12-22GERNo205 Lbs6 ft4NoNoN/ANoNo22024-07-30FalseFalsePro & Farm812,500$0$0$No812,500$--------812,500$--------No--------Link
Pavol RegendaChicago Wolves (QUE)LW/RW241999-07-12SVKNo218 Lbs6 ft3NoNoN/ANoNo12024-07-06FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Philippe MyersChicago Wolves (QUE)D271997-01-25NBNo209 Lbs6 ft5NoNoN/ANoNo12024-07-02FalseFalsePro & Farm775,000$0$0$No---------------------------Link / NHL Link
Santtu KinnunenChicago Wolves (QUE)D251999-03-25FINNo154 Lbs6 ft2NoNoN/ANoNo12024-09-04FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Sebastian CossaChicago Wolves (QUE)G212002-11-21ONTYes210 Lbs6 ft6NoNoProspectNoNo22024-06-21FalseFalsePro & Farm863,333$0$0$No863,333$--------863,333$863,333$-------No--------Link
Tyler KlevenChicago Wolves (QUE)D222002-01-10USAYes200 Lbs6 ft4NoNoProspectNoNo12024-06-21FalseFalsePro & Farm916,667$0$0$No---------916,667$-----------------Link
Valtteri PuustinenChicago Wolves (QUE)LW/RW251999-06-04FINNo178 Lbs5 ft9NoNoN/ANoNo22024-06-21FalseFalsePro & Farm775,000$0$0$No775,000$--------775,000$--------No--------Link
Vasily PodkolzinChicago Wolves (QUE)RW232001-06-24RUSNo189 Lbs6 ft1NoNoN/ANoNo22024-05-01FalseFalsePro & Farm1,000,000$0$0$No1,000,000$--------1,258,333$--------No--------Link
William LockwoodChicago Wolves (QUE)RW261998-06-20USANo172 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm775,000$0$0$No---------------------------Link / NHL Link
Wilmer SkoogChicago Wolves (QUE)C241999-07-17SWENo196 Lbs6 ft2NoNoAssign ManuallyNoNo12024-06-20FalseFalsePro & Farm775,000$0$0$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2224.09193 Lbs6 ft21.45852,879$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Valtteri PuustinenMitchell StephensHudson Fasching25032
2Pavol RegendaJackson CatesVasily Podkolzin25032
3Ivan MiroshnichenkoWilmer SkoogWilliam Lockwood25032
4Lukas RousekMitchell StephensHudson Fasching25032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan HarrisPhilippe Myers35032
2Cavan FitzgeraldTyler Kleven35032
3Santtu KinnunenDaniil Chayka30032
4David ReinbacherDean Stewart0032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Valtteri PuustinenMitchell StephensHudson Fasching50032
2Pavol RegendaJackson CatesVasily Podkolzin50032
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan HarrisPhilippe Myers50032
2Cavan FitzgeraldTyler Kleven50032
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mitchell StephensValtteri Puustinen50032
2Jackson CatesPavol Regenda50032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan HarrisPhilippe Myers50032
2Cavan FitzgeraldTyler Kleven50032
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mitchell Stephens50032Jordan HarrisPhilippe Myers50032
2Jackson Cates50032Cavan FitzgeraldTyler Kleven50032
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mitchell StephensValtteri Puustinen50032
2Jackson CatesPavol Regenda50032
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan HarrisPhilippe Myers50032
2Cavan FitzgeraldTyler Kleven50032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Valtteri PuustinenMitchell StephensHudson FaschingJordan HarrisPhilippe Myers
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Valtteri PuustinenMitchell StephensHudson FaschingJordan HarrisPhilippe Myers
Extra Forwards
Normal PowerPlayPenalty Kill
Pavol Regenda, Ivan Miroshnichenko, William LockwoodPavol Regenda, Ivan MiroshnichenkoPavol Regenda
Extra Defensemen
Normal PowerPlayPenalty Kill
Daniil Chayka, David Reinbacher, Dean StewartDaniil ChaykaDaniil Chayka, David Reinbacher
Penalty Shots
Valtteri Puustinen, Hudson Fasching, Vasily Podkolzin, Mitchell Stephens, Pavol Regenda
Goalie
#1 : Drew Commesso, #2 : Sebastian Cossa


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000%000%0000%000%000%000000

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
00N/A0000000000
All Games
GPWLOTWOTL SOWSOLGFGA
000000000
Home Games
GPWLOTWOTL SOWSOLGFGA
000000000
Visitor Games
GPWLOTWOTL SOWSOLGFGA
000000000
Last 10 Games
WLOTWOTL SOWSOL
000000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
000%000%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
00000000
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
000%000%000%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
000000


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2510
Attendance0%0%
Attendance PCT0%0%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
38 0 - 0%0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
0$ 1,876,333$ 1,876,333$ 60,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 2 0$ 0$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Adam Johnson338245346591-84470496704168514.54%311809623.95531381911594042223056.42%151.46524
2Mitchell Stephens48820334855129282549866140314.47%361830917.032366897266121222755.67%151.33213
3Morgan Klimchuk32820024044032292512440116817.12%208611618.6560681281440008241241.43%81.4400
4C.J. Smith276155241396-11026839466295316.26%253599721.733457918700097943.04%41.32416
5Patrick Brown304144240384-9228850856088816.22%228609620.05406010096808812849.52%81.26812

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Pat Nagle2129680240.8924.2012339008648004440420160.25016
2Kyle Keyser1494473220.8725.047958160669523832101100.54951
3Daniel Vladar56351350.8844.4731856023720441196510.71421
4Devin Cooley3223420.8714.7617660014010886242000
5Nico Daws38162010.8824.532000401511278738020.90010

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202082303902614388393-541171900203211203841132002411177190-1376388614100250901581376270375510189113532561118107914442149242.99%2057563.41%5776155649.87%889182948.61%739154047.99%155779017977761605821
202082303902614388393-541171900203211203841132002411177190-1376388614100250901581376270375510189113532561118107914442149242.99%2057563.41%5776155649.87%889182948.61%739154047.99%155779017977761605821
202178155003415335467-1323952601313155239-8439102402102180228-484733554487920691311316287077510131057412930991156315511888243.62%2449162.70%3798165748.16%700149346.89%748153848.63%154482216687491510734
20238253170243359638121541277011322891771124126100130130720410312359697315691018623616993190999109710862931331078123218352026632.67%1122974.11%9789158449.81%853166051.39%928175352.94%1770100116607231524796
202476313701142412348643816160013221715562381521010101951932754126631075508718613492135518822787282674834109612801946634.02%1525365.13%3674125353.79%826156252.88%726142251.05%146672815967091529820
Total Regular Season400159182010211018211919821372008287029713108397710620077950812351036100531397211934085527180522869708361360138024968475216815249513960497554101239839.33%91832364.81%253813760650.13%4157837349.65%3880779349.79%789641328521373577763994
Playoff
20239540000045301553200000251694220000020146104579124001316160364118138108035810915618422522.73%18761.11%08718347.54%10521050.00%8916952.66%1871051858316885
Total Playoff9540000045301553200000251694220000020146104579124001316160364118138108035810915618422522.73%18761.11%08718347.54%10521050.00%8916952.66%1871051858316885

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Hudson Fasching9711180210184316.28%819221.34033300000048.21%01.8700
2Tyson Foerster9691531115113517.14%116218.06112300002054.50%01.8500
3Mitchell Stephens9481211920202218.18%215216.99022300001058.40%01.5700
4Jordan Harris92911801116229.09%1821724.1321320000000%01.0100
5Saku Maenalanen965113518131735.29%315517.33112200000023.53%01.4100

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Daniel Vladar64200.9203.1835820192371361000
2Devin Cooley31110.9093.671800011121681000