Chicago Wolves
GP: 64 | W: 25 | L: 31 | OTL: 8 | P: 58
GF: 311 | GA: 312 | PP%: 44.97% | PK%: 62.82%
GM : Camil Costandi | Morale : 34 | Team Overall : 58
Next Games #1014 vs Rimouski Oceanic
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Hudson Fasching (R)X100.008176916576747862505563696052526630610251737,500$
2Adam JohnsonXX100.007264916264778163796458635545456338600261700,000$
3Patrick BrownXX100.008077877277778353665150654846475940590281700,000$
4Mikhail VorobyevX100.005941907172567855856057662547476150590241784,167$
5Mitchell StephensX100.007343916570576460865858742547476340590241833,333$
6Morgan KlimchukX100.007568906668616260505660645744446347580261700,000$
7Vitali KravtsovX100.007971967571616355505154645144446061580211925,002$
8Andrew OglevieX100.007365916365606160505362635944446223570261925,000$
9C.J. SuessX100.007369836069616258505161625844446149560271500,000$
10Brent PedersenX100.008176946076616549504746644444445530540251700,000$
11Calle RosenX100.006141897065627064255947592556565822590271750,000$
12Kevin CzuczmanX100.007976876676646848254041633946465350580301700,000$
13Ian McCoshenX100.007680666080707747253740623850505157580251700,000$
14Simon BenoitX100.007573806473707650254441613944445475580222925,000$
15Aaron NessX100.006942996966607258254347592552525750580301725,000$
16Martin Fehervary (R)X100.007572837272667147253841603944445350570211805,835$
17Josh Brook (R)X100.007371796971738047253741593944445248570211795,000$
18Cavan FitzgeraldX100.007368866568596347253641623954545248560241656,667$
Scratches
1Eric KnodelX92.448883995583586052255039683744445539580301750,000$
TEAM AVERAGE99.58746688667265705444495064424747584558
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pat Nagle99.00646176656564626964643044446432610
2Kyle Keyser (R)100.00495670694749505548483044445050520
Scratches
TEAM AVERAGE99.5057597367565756625656304444574157
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Kevin Dean66787262777173USA51260,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam JohnsonChicago Wolves (QUE)C/LW594259101-179755831073059117013.77%54141223.94923322710210141023060.23%2646433021.4314551563
2Morgan KlimchukChicago Wolves (QUE)LW6443438675125107902287011618.86%40117918.4313122527940002284344.00%506231021.4600023714
3C.J. SmithNordiquesC/LW/RW48314980-304725691371996812415.58%54119724.948132119770002881242.60%14674125011.3414311334
4Mikhail VorobyevChicago Wolves (QUE)C643444785200811312095813516.27%44118818.5828109670223431159.38%8374537031.3101000325
5Patrick BrownChicago Wolves (QUE)C/RW58284472-256335911011794611615.64%46118320.4110112121981011343152.48%2024529021.2222124342
6Vitali KravtsovChicago Wolves (QUE)RW643238707372590931766010618.18%28111817.47114152577000004142.00%504123011.2500302134
7Mitchell StephensChicago Wolves (QUE)C62163147-2756897155399010.32%5497015.661564251011283152.40%4582427010.9701001120
8Doyle SomerbyNordiquesD585364151376595947224306.94%107137623.7331417161040001100000.00%0755000.6000346023
9C.J. SuessChicago Wolves (QUE)LW64221537227156867134378116.42%34100315.683037150000381342.86%562730020.7400012211
10Andrew OglevieChicago Wolves (QUE)RW53181533-2005656112376716.07%2769913.2100009000092133.33%272423010.9400000202
11Simon BenoitChicago Wolves (QUE)D652222419986093685832253.45%73134520.700552107000064000.00%01342000.3600453000
12Kevin CzuczmanChicago Wolves (QUE)D6421921-14724054674723154.26%62106316.61055660011162000.00%0851000.4000440001
13Hudson FaschingChicago Wolves (QUE)RW1210112123735201836182827.78%628423.705385190113251050.00%3874011.4801214131
14Calle RosenChicago Wolves (QUE)D29316191311518334516256.67%4064822.37358853000246000.00%0925000.5900010201
15Ian McCoshenChicago Wolves (QUE)D6421517-20993563583814155.26%62111617.442023680000551033.33%3436000.3000214000
16Gabriel DumontNordiquesC/RW508715-183010734467255011.94%558911.79101130000101054.76%421911000.5100002000
17Lawrence PilutNordiquesD211910-57518422817163.57%5251024.30112237000043000.00%0726000.3900001001
18Eric KnodelChicago Wolves (QUE)D6001010-21242030582313210.00%5886114.360221230110420050.00%2338000.2300013001
19Brent PedersenChicago Wolves (QUE)LW404610-14552021149928.57%63077.6900002000030064.29%14313000.6500010000
20Aaron NessChicago Wolves (QUE)D64224-72012342811147.14%2672711.37101214000027000.00%0418000.1100000001
21Martin FehervaryChicago Wolves (QUE)D64033012011163420.00%133645.7000003000130066.67%348000.1600000000
22Cavan FitzgeraldChicago Wolves (QUE)D61011-1075722000.00%41612.6501106000030066.67%306000.1200001000
23Josh BrookChicago Wolves (QUE)D64011-31810112310430.00%124336.7800000000010000.00%006000.0500011000
Team Total or Average1252305496801-128908480123814572168716125814.07%9071974515.7773112185185107335821872251350.06%35164615970160.81413273039302734
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pat NagleChicago Wolves (QUE)37161450.8884.292156001541374752430.0002379200
2Kyle KeyserChicago Wolves (QUE)2591230.8794.95144240119980605200.545112444010
3David AyresNordiques30200.8476.8213200159866000.000019000
Team Total or Average65252880.8834.6337314028824521423630.462136262210


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron NessChicago Wolves (QUE)D301990-05-18No184 Lbs5 ft11NoNoNo1Pro & Farm725,000$0$0$NoLink
Adam JohnsonChicago Wolves (QUE)C/LW261994-06-22No174 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLink
Andrew OglevieChicago Wolves (QUE)RW261995-02-16No181 Lbs5 ft10NoNoNo1Pro & Farm925,000$0$0$NoLink
Brent PedersenChicago Wolves (QUE)LW251995-07-05No205 Lbs6 ft2YesNoNo1Pro & Farm700,000$0$0$NoLink
C.J. SuessChicago Wolves (QUE)LW271994-03-17No190 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$NoLink
Calle RosenChicago Wolves (QUE)D271994-02-02No176 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoLink
Cavan FitzgeraldChicago Wolves (QUE)D241996-08-23No186 Lbs6 ft0NoNoNo1Pro & Farm656,667$0$0$NoLink
Eric Knodel (Out of Payroll)Chicago Wolves (QUE)D301990-06-08No216 Lbs6 ft6YesNoNo1Pro & Farm750,000$0$0$NoLink
Hudson FaschingChicago Wolves (QUE)RW251995-07-28Yes209 Lbs6 ft2NoNoNo1Pro & Farm737,500$0$0$NoLink
Ian McCoshenChicago Wolves (QUE)D251995-08-05No217 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoLink
Josh BrookChicago Wolves (QUE)D211999-06-17Yes192 Lbs6 ft1NoNoNo1Pro & Farm795,000$0$0$No
Kevin CzuczmanChicago Wolves (QUE)D301991-01-09No206 Lbs6 ft2NoNoNo1Pro & Farm700,000$0$0$NoLink
Kyle KeyserChicago Wolves (QUE)G221999-03-08Yes178 Lbs6 ft2NoNoNo3Pro & Farm733,333$0$0$No733,333$733,333$Link
Martin FehervaryChicago Wolves (QUE)D211999-10-06Yes194 Lbs6 ft2NoNoNo1Pro & Farm805,835$0$0$NoLink
Mikhail VorobyevChicago Wolves (QUE)C241997-01-04No194 Lbs6 ft2NoNoNo1Pro & Farm784,167$0$0$NoLink
Mitchell StephensChicago Wolves (QUE)C241997-02-05No191 Lbs6 ft0NoNoNo1Pro & Farm833,333$0$0$NoLink
Morgan KlimchukChicago Wolves (QUE)LW261995-03-01No185 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLink
Pat NagleChicago Wolves (QUE)G331987-09-21No170 Lbs6 ft2YesNoNo1Pro & Farm750,000$0$0$NoLink
Patrick BrownChicago Wolves (QUE)C/RW281992-05-29No210 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLink
Simon BenoitChicago Wolves (QUE)D221998-09-19No192 Lbs6 ft3NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Vitali KravtsovChicago Wolves (QUE)RW211999-12-23No183 Lbs6 ft4NoNoNo1Pro & Farm925,002$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2125.57192 Lbs6 ft11.14752,183$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Morgan KlimchukAdam JohnsonHudson Fasching40122
2C.J. SuessPatrick BrownVitali Kravtsov30122
3Brent PedersenMikhail VorobyevAndrew Oglevie20122
4Hudson FaschingMitchell StephensAdam Johnson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenSimon Benoit40122
2Ian McCoshenKevin Czuczman30122
3Aaron NessJosh Brook20122
4Martin FehervaryCavan Fitzgerald10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Morgan KlimchukAdam JohnsonHudson Fasching60122
2C.J. SuessPatrick BrownVitali Kravtsov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenSimon Benoit60122
2Ian McCoshenKevin Czuczman40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Hudson FaschingAdam Johnson60122
2Patrick BrownMikhail Vorobyev40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenSimon Benoit60122
2Ian McCoshenKevin Czuczman40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Hudson Fasching60122Calle RosenSimon Benoit60122
2Adam Johnson40122Ian McCoshenKevin Czuczman40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Hudson FaschingAdam Johnson60122
2Patrick BrownMikhail Vorobyev40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenSimon Benoit60122
2Ian McCoshenKevin Czuczman40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Morgan KlimchukAdam JohnsonHudson FaschingCalle RosenSimon Benoit
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Morgan KlimchukAdam JohnsonHudson FaschingCalle RosenSimon Benoit
Extra Forwards
Normal PowerPlayPenalty Kill
Mitchell Stephens, Andrew Oglevie, Brent PedersenMitchell Stephens, Andrew OglevieBrent Pedersen
Extra Defensemen
Normal PowerPlayPenalty Kill
Aaron Ness, Josh Brook, Martin FehervaryAaron NessJosh Brook, Martin Fehervary
Penalty Shots
Hudson Fasching, Adam Johnson, Patrick Brown, Mikhail Vorobyev, Mitchell Stephens
Goalie
#1 : Pat Nagle, #2 : Kyle Keyser


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Binghampton Senators1010000013-2000000000001010000013-200.00012300661351076255757977042830111424100.00%20100.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
2Boisbriand Armada21100000871110000005231010000035-220.50081018106613510765557579770428833014378337.50%20100.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
3Brampton Battalion1010000014-3000000000001010000014-300.00012300661351076265757977042843102129200.00%3166.67%0570118947.94%669140047.79%579122347.34%121461414056031255643
4Bridgeport Sound Tigers615000002435-11303000001117-6312000001318-520.16724386200661351076168575797704282331057712416425.00%16568.75%0570118947.94%669140047.79%579122347.34%121461414056031255643
5Calgary Hitman11000000514000000000001100000051421.0005712006613510763957579770428451351733100.00%000.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
6Chicoutimi Sagueneens502000122228-6301000021115-4201000101113-240.400223052006613510761375757977042819858328217741.18%11554.55%0570118947.94%669140047.79%579122347.34%121461414056031255643
7Drummondville Voltigeurs1010000024-21010000024-20000000000000.000246006613510764357579770428361915166116.67%5260.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
8Grand Rapids Griffins86200000633726422000003225744000000311219120.7506396159006613510762965757977042836912684121282175.00%221245.45%3570118947.94%669140047.79%579122347.34%121461414056031255643
9Hartford Wolf Pack412001002125-431100100191901010000026-430.37521345500661351076144575797704281655938659333.33%14935.71%0570118947.94%669140047.79%579122347.34%121461414056031255643
10Hershey Bears4110110022175211000001275200011001010050.62522345600661351076147575797704281564251738337.50%8275.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
11Las Vegas Wranglers1000000145-11000000145-10000000000010.5004812006613510762657579770428341614144125.00%2150.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
12Laval Rockets220000001367110000006421100000072541.000132134006613510768557579770428852532282150.00%6266.67%0570118947.94%669140047.79%579122347.34%121461414056031255643
13London Knights11000000725110000007250000000000021.0007121900661351076315757977042814815315360.00%000.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
14Lowell Devils1010000015-41010000015-40000000000000.0001230066135107633575797704283681617400.00%30100.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
15Manchester Monarchs11000000752000000000001100000075221.0007132000661351076385757977042835741411100.00%2150.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
16Milwaukee Admirals11000000532110000005320000000000021.00057120066135107636575797704284622419100.00%2150.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
17Peoria Riverman20200000914-51010000089-11010000015-400.00091625006613510764357579770428842653254250.00%4175.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
18Philadelphia Phantoms40300100921-121010000037-430200100614-810.1259152400661351076126575797704281635039646116.67%12375.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
19Portland Pirates11000000826110000008260000000000021.00081624006613510764057579770428371331192150.00%3166.67%0570118947.94%669140047.79%579122347.34%121461414056031255643
20Quebec Rempart20200000616-101010000036-310100000310-700.0006814006613510767157579770428782957315120.00%6350.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
21Rimouski Oceanic21100000912-321100000912-30000000000020.50091524006613510768057579770428652246297228.57%8275.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
22Rochester Americans1000010056-1000000000001000010056-110.500591400661351076205757977042831155193133.33%000.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
23Seattle Thunderbirds2200000013582200000013580000000000041.000132134006613510767157579770428792330386350.00%50100.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
24Sherbrooke Phoenix1010000023-1000000000001010000023-100.00022400661351076235757977042834157152150.00%10100.00%1570118947.94%669140047.79%579122347.34%121461414056031255643
25Texas Stars31101000151321100000063320101000910-140.66715243910661351076115575797704281133354599555.56%7271.43%0570118947.94%669140047.79%579122347.34%121461414056031255643
26Toronto Marlies1010000046-21010000046-20000000000000.0004711006613510761657579770428261621711100.00%110.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
27Victoriaville Tigres1000010089-1000000000001000010089-110.500811190066135107638575797704284913141733100.00%2150.00%0570118947.94%669140047.79%579122347.34%121461414056031255643
28Worcester Sharks413000001718-111000000725303000001016-620.25017274420661351076119575797704281646248806466.67%9366.67%0570118947.94%669140047.79%579122347.34%121461414056031255643
Total64223102513311312-133141500103176160163181602410135152-17580.45331149180240661351076209157579770428253187682211241697644.97%1565862.82%4570118947.94%669140047.79%579122347.34%121461414056031255643
_Since Last GM Reset64223102513311312-133141500103176160163181602410135152-17580.45331149180240661351076209157579770428253187682211241697644.97%1565862.82%4570118947.94%669140047.79%579122347.34%121461414056031255643
_Vs Conference49172402312251249226111200102148133152361202210103116-13450.4592513956463066135107616425757977042819896736728381255846.40%1315061.83%3570118947.94%669140047.79%579122347.34%121461414056031255643

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6458W231149180220912531876822112440
All Games
GPWLOTWOTL SOWSOLGFGA
6422312513311312
Home Games
GPWLOTWOTL SOWSOLGFGA
3314150103176160
Visitor Games
GPWLOTWOTL SOWSOLGFGA
318162410135152
Last 10 Games
WLOTWOTL SOWSOL
530101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1697644.97%1565862.82%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
57579770428661351076
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
570118947.94%669140047.79%579122347.34%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
121461414056031255643


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-11-105Chicago Wolves8Grand Rapids Griffins3WBoxScore
3 - 2020-11-1222Grand Rapids Griffins2Chicago Wolves12WBoxScore
4 - 2020-11-1338Chicago Wolves7Grand Rapids Griffins4WBoxScore
5 - 2020-11-1446Chicago Wolves5Chicoutimi Sagueneens8LBoxScore
7 - 2020-11-1660Grand Rapids Griffins11Chicago Wolves7LBoxScore
10 - 2020-11-1983Philadelphia Phantoms7Chicago Wolves3LBoxScore
12 - 2020-11-21104Bridgeport Sound Tigers6Chicago Wolves4LBoxScore
13 - 2020-11-22118Chicago Wolves5Worcester Sharks7LBoxScore
15 - 2020-11-24129Chicago Wolves6Chicoutimi Sagueneens5WXXBoxScore
16 - 2020-11-25142Chicago Wolves1Philadelphia Phantoms5LBoxScore
17 - 2020-11-26155Hartford Wolf Pack4Chicago Wolves7WBoxScore
19 - 2020-11-28176Rimouski Oceanic6Chicago Wolves2LBoxScore
21 - 2020-11-30187Chicago Wolves2Bridgeport Sound Tigers4LBoxScore
23 - 2020-12-02209Chicoutimi Sagueneens4Chicago Wolves3LXXBoxScore
25 - 2020-12-04227Bridgeport Sound Tigers6Chicago Wolves4LBoxScore
27 - 2020-12-06241Chicago Wolves4Hershey Bears5LXBoxScore
29 - 2020-12-08258Hershey Bears2Chicago Wolves9WBoxScore
30 - 2020-12-09269Chicago Wolves6Hershey Bears5WXBoxScore
32 - 2020-12-11285Hartford Wolf Pack8Chicago Wolves7LXBoxScore
34 - 2020-12-13300Chicago Wolves3Worcester Sharks5LBoxScore
35 - 2020-12-14317Chicago Wolves3Boisbriand Armada5LBoxScore
37 - 2020-12-16331Grand Rapids Griffins5Chicago Wolves3LBoxScore
39 - 2020-12-18348Hartford Wolf Pack7Chicago Wolves5LBoxScore
41 - 2020-12-20363Chicago Wolves3Quebec Rempart10LBoxScore
42 - 2020-12-21381Worcester Sharks2Chicago Wolves7WBoxScore
44 - 2020-12-23396Chicago Wolves7Laval Rockets2WBoxScore
45 - 2020-12-24408Chicago Wolves7Grand Rapids Griffins3WBoxScore
47 - 2020-12-26423Toronto Marlies6Chicago Wolves4LBoxScore
49 - 2020-12-28440Chicago Wolves4Texas Stars6LBoxScore
51 - 2020-12-30455Lowell Devils5Chicago Wolves1LBoxScore
53 - 2021-01-01473Chicago Wolves5Rochester Americans6LXBoxScore
55 - 2021-01-03489Boisbriand Armada2Chicago Wolves5WBoxScore
57 - 2021-01-05504Hershey Bears5Chicago Wolves3LBoxScore
59 - 2021-01-07526Chicago Wolves2Worcester Sharks4LBoxScore
61 - 2021-01-09542Texas Stars3Chicago Wolves6WBoxScore
63 - 2021-01-11559Chicago Wolves5Calgary Hitman1WBoxScore
64 - 2021-01-12573Laval Rockets4Chicago Wolves6WBoxScore
65 - 2021-01-13585Chicago Wolves5Texas Stars4WXBoxScore
67 - 2021-01-15598Chicago Wolves9Grand Rapids Griffins2WBoxScore
68 - 2021-01-16614Drummondville Voltigeurs4Chicago Wolves2LBoxScore
71 - 2021-01-19633London Knights2Chicago Wolves7WBoxScore
73 - 2021-01-21648Chicago Wolves2Sherbrooke Phoenix3LBoxScore
74 - 2021-01-22663Milwaukee Admirals3Chicago Wolves5WBoxScore
76 - 2021-01-24682Chicago Wolves7Bridgeport Sound Tigers5WBoxScore
77 - 2021-01-25691Chicago Wolves1Peoria Riverman5LBoxScore
79 - 2021-01-27704Peoria Riverman9Chicago Wolves8LBoxScore
81 - 2021-01-29724Chicago Wolves8Victoriaville Tigres9LXBoxScore
82 - 2021-01-30734Las Vegas Wranglers5Chicago Wolves4LXXBoxScore
84 - 2021-02-01758Bridgeport Sound Tigers5Chicago Wolves3LBoxScore
85 - 2021-02-02774Chicago Wolves4Bridgeport Sound Tigers9LBoxScore
87 - 2021-02-04784Chicago Wolves2Hartford Wolf Pack6LBoxScore
88 - 2021-02-05800Portland Pirates2Chicago Wolves8WBoxScore
91 - 2021-02-08820Chicoutimi Sagueneens4Chicago Wolves2LBoxScore
93 - 2021-02-10836Chicago Wolves3Philadelphia Phantoms6LBoxScore
94 - 2021-02-11849Chicoutimi Sagueneens7Chicago Wolves6LXXBoxScore
95 - 2021-02-12861Chicago Wolves7Manchester Monarchs5WBoxScore
98 - 2021-02-15881Chicago Wolves1Brampton Battalion4LBoxScore
99 - 2021-02-16892Quebec Rempart6Chicago Wolves3LBoxScore
102 - 2021-02-19914Seattle Thunderbirds4Chicago Wolves8WBoxScore
104 - 2021-02-21936Grand Rapids Griffins7Chicago Wolves10WBoxScore
105 - 2021-02-22944Chicago Wolves1Binghampton Senators3LBoxScore
107 - 2021-02-24962Chicago Wolves2Philadelphia Phantoms3LXBoxScore
109 - 2021-02-26977Seattle Thunderbirds1Chicago Wolves5WBoxScore
111 - 2021-02-28999Rimouski Oceanic6Chicago Wolves7WBoxScore
113 - 2021-03-021014Chicago Wolves-Rimouski Oceanic-
114 - 2021-03-031026Peoria Riverman-Chicago Wolves-
115 - 2021-03-041034Chicago Wolves-Manitoba Moose-
117 - 2021-03-061057Philadelphia Phantoms-Chicago Wolves-
119 - 2021-03-081072Chicago Wolves-Chicoutimi Sagueneens-
120 - 2021-03-091081Chicago Wolves-Seattle Thunderbirds-
121 - 2021-03-101094Chicago Wolves-Grand Rapids Griffins-
123 - 2021-03-121111Portland Pirates-Chicago Wolves-
126 - 2021-03-151131Quebec Rempart-Chicago Wolves-
128 - 2021-03-171150Manitoba Moose-Chicago Wolves-
130 - 2021-03-191173Chicago Wolves-Lake Erie Monsters-
131 - 2021-03-201178Chicago Wolves-Portland Pirates-
133 - 2021-03-221192Philadelphia Phantoms-Chicago Wolves-
135 - 2021-03-241214Rimouski Oceanic-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
137 - 2021-03-261222Chicago Wolves-Laval Rockets-
138 - 2021-03-271226Chicago Wolves-Chicoutimi Sagueneens-
139 - 2021-03-281235Chicago Wolves-Portland Pirates-
142 - 2021-03-311256Manitoba Moose-Chicago Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2510
Attendance63,90432,338
Attendance PCT96.82%97.99%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
8 2916 - 97.21% 86,735$2,862,259$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,306,533$ 1,504,584$ 1,412,084$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,306,533$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
693,881$ 33 10,790$ 356,070$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT