Milwaukee Admirals
GP: 65 | W: 23 | L: 35 | OTL: 7 | P: 53
GF: 281 | GA: 352 | PP%: 34.73% | PK%: 60.75%
GM : Sebastien Doyon | Morale : 32 | Team Overall : 58
Next Games #1020 vs Sherbrooke Phoenix
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Janne KuokkanenXXX99.007569897769727371657860675950506752650221925,000$
2Troy TerryXX100.0057409577656884743668595453545464426202331,450,000$
3Alexis Lafreniere (R)X100.007343957869748070255668552544449052610193925,000$
4Frederick GaudreauX100.007465956465656664806062685958586538610271700,000$
5Brett RitchieX100.0098707877815664623662585525656663486102711,000,000$
6Evan WeingerX100.00787098667064666050566065574444634959X0241700,000$
7Axel Jonsson-FjallbyX100.007668946668585955504858635544446045560232860,000$
8Reese Johnson (R)X100.007071676371738048504446584444445342530221880,834$
9Luke GazdicX100.008684905884444545503844694260605336520311700,000$
10Drake RymshaX100.007068755368545747594444584244445151500222733,333$
11Bowen Byram (R)X100.007974817472778059255040732544445242630193894,167$
12Jordan GrossX99.007568916668727756254652634944446037590251925,000$
13Logan DayX100.007475706875687350254046614444445520570261750,000$
14Hubert LabrieX100.006966776766707747253839593749495250560291700,000$
15Thomas HickeyX100.0072688055685152502540396637687051335603222,500,000$
16Tobias GeisserX100.00847799527746484125283963374444494952X0222803,333$
Scratches
1Rem Pitlick (R)XX62.287470826570666860755362635944446240580241874,125$
2Tanner MacMasterX100.0070687565687073607558586155444461205802500$
3Chris BigrasX83.207571836371606354254941653957575552580261700,000$
TEAM AVERAGE97.00756885667164685643505162445050594258
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Anton Forsberg100.00576177785859526055543048484537580
2Mat Robson (R)100.00525873785155505753523044445347550
TEAM AVERAGE100.0055607578555751595453304646494257
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ben Simon64666571645984USA41160,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Troy TerryMilwaukee Admirals (WIN)C/RW584061101-23120721232216815718.10%47141724.431213252810900041164137.96%10885831011.4315000964
2Brett RitchieMilwaukee Admirals (WIN)RW58295483-281165011089172579516.86%51122321.104192318980113695135.14%1855036001.3615334322
3Frederick GaudreauMilwaukee Admirals (WIN)C55353570-10211574125206699916.99%38110620.125101515831013461058.48%7783723021.2624111344
4Rem PitlickMilwaukee Admirals (WIN)C/LW65322759-2810450113931676511219.16%33131520.2510717221151013383055.06%894830030.9001235340
5Evan WeingerMilwaukee Admirals (WIN)RW65263359-271515801001965512313.27%38120218.5054917690002301144.44%724123000.9811111121
6Axel Jonsson-FjallbyMilwaukee Admirals (WIN)LW65192342-2147358579111297617.12%37112317.284157631122420032.14%563023010.7500133101
7Jordan GrossMilwaukee Admirals (WIN)D5542832-25111658311810843473.70%86145526.46279911003351230050.00%22151000.4400346101
8Logan DayMilwaukee Admirals (WIN)D4732831-51527087907125354.23%52119925.52178985022385100.00%22243000.5200266101
9Drake RymshaMilwaukee Admirals (WIN)C65151631-2033158210658183025.86%2895514.700220140111180047.81%4561218100.6500003000
10Janne KuokkanenMilwaukee Admirals (WIN)C/LW/RW15151429-32715273269234421.74%1237024.7362810300000321253.92%523205011.5611111131
11Reese JohnsonMilwaukee Admirals (WIN)RW65161329-135210947186284918.60%2892114.181121150000110031.03%582516000.6300020013
12Chris BigrasMilwaukee Admirals (WIN)D6342226-197640831097325435.48%76140122.2524689701121021020.00%51043000.3700413002
13Alexis LafreniereMilwaukee Admirals (WIN)LW18141024-395222468215420.59%836820.452249440001110139.39%331921011.3001100111
14Luke GazdicMilwaukee Admirals (WIN)LW40711184593526323422020.59%1342310.58000021012141033.33%24311000.8500313000
15Thomas HickeyMilwaukee Admirals (WIN)D5421517-27763048663618145.56%7099118.371455530112610133.33%6826000.3400411010
16Hubert LabrieMilwaukee Admirals (WIN)D6501414-23241058643626270.00%53111317.130441370000250016.67%6733000.2500002000
17Bowen ByramMilwaukee Admirals (WIN)D1401212-435153024297150.00%2437526.85000134000028000.00%0312000.6400111101
18Tobias GeisserMilwaukee Admirals (WIN)D6521012-19151549613813105.26%5299715.341011100112520014.29%7226000.2400111000
Team Total or Average932263426689-294984490122314061779592105014.78%7461796319.2756871431611077411153591018746.52%3390416471190.77618282941252422
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anton ForsbergMilwaukee Admirals (WIN)43171660.8624.972354201951408772300.66712425102
2Mat RobsonMilwaukee Admirals (WIN)2551300.8615.2110952095682382110.00001541000
Team Total or Average68222960.8615.0534494029020901154410.667125746102


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexis LafreniereMilwaukee Admirals (WIN)LW192001-10-11 09:39:59Yes193 Lbs6 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$
Anton ForsbergMilwaukee Admirals (WIN)G281992-11-26No192 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoLink
Axel Jonsson-FjallbyMilwaukee Admirals (WIN)LW231998-02-10No185 Lbs6 ft0NoNoNo2Pro & Farm860,000$0$0$No860,000$Link
Bowen ByramMilwaukee Admirals (WIN)D192001-06-13 10:06:30Yes195 Lbs6 ft0NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$
Brett RitchieMilwaukee Admirals (WIN)RW271993-07-01No217 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$0$0$NoLink
Chris Bigras (Out of Payroll)Milwaukee Admirals (WIN)D261995-02-22No190 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLink
Drake RymshaMilwaukee Admirals (WIN)C221998-08-05No187 Lbs6 ft0NoNoNo2Pro & Farm733,333$0$0$No733,333$Link
Evan WeingerMilwaukee Admirals (WIN)RW241997-04-18No194 Lbs6 ft0NoYesNo1Pro & Farm700,000$0$0$NoLink
Frederick GaudreauMilwaukee Admirals (WIN)C271993-05-01No179 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLink
Hubert LabrieMilwaukee Admirals (WIN)D291991-07-12No180 Lbs5 ft11YesNoNo1Pro & Farm700,000$0$0$NoLink
Janne KuokkanenMilwaukee Admirals (WIN)C/LW/RW221998-05-25No188 Lbs6 ft1NoNoNo1Pro & Farm925,000$0$0$NoLink
Jordan GrossMilwaukee Admirals (WIN)D251995-05-09No190 Lbs5 ft10NoNoNo1Pro & Farm925,000$0$0$NoLink
Logan DayMilwaukee Admirals (WIN)D261994-09-19No209 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink
Luke GazdicMilwaukee Admirals (WIN)LW311989-07-24No225 Lbs6 ft4YesNoNo1Pro & Farm700,000$0$0$NoLink
Mat RobsonMilwaukee Admirals (WIN)G251996-03-26Yes190 Lbs6 ft3NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Reese JohnsonMilwaukee Admirals (WIN)RW221998-07-10Yes192 Lbs6 ft1NoNoNo1Pro & Farm880,834$0$0$NoLink
Rem Pitlick (Out of Payroll)Milwaukee Admirals (WIN)C/LW241997-04-01Yes196 Lbs5 ft11NoNoNo1Pro & Farm874,125$0$0$No
Tanner MacMasterMilwaukee Admirals (WIN)C251996-01-08No185 Lbs6 ft0NoNoNo0Pro & Farm0$0$NoLink
Thomas HickeyMilwaukee Admirals (WIN)D321989-02-08No188 Lbs6 ft0NoNoNo2Pro & Farm2,500,000$0$0$No2,500,000$Link
Tobias GeisserMilwaukee Admirals (WIN)D221999-02-13No201 Lbs6 ft4NoYesNo2Pro & Farm803,333$0$0$No803,333$Link
Troy TerryMilwaukee Admirals (WIN)C/RW231997-09-10No174 Lbs6 ft1NoNoNo3Pro & Farm1,450,000$0$0$No1,450,000$1,450,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2124.81193 Lbs6 ft11.48887,895$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexis LafreniereJanne KuokkanenTroy Terry40122
2Frederick GaudreauBrett Ritchie30122
3Axel Jonsson-FjallbyDrake RymshaEvan Weinger20122
4Luke GazdicJanne KuokkanenReese Johnson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Bowen ByramJordan Gross40122
2Hubert LabrieLogan Day30122
3Thomas HickeyTobias Geisser20122
4Bowen ByramJordan Gross10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexis LafreniereJanne KuokkanenTroy Terry60122
2Frederick GaudreauBrett Ritchie40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Bowen ByramJordan Gross60122
2Hubert LabrieLogan Day40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Janne KuokkanenTroy Terry60122
2Alexis LafreniereBrett Ritchie40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Bowen ByramJordan Gross60122
2Hubert LabrieLogan Day40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Janne Kuokkanen60122Bowen ByramJordan Gross60122
2Troy Terry40122Hubert LabrieLogan Day40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Janne KuokkanenTroy Terry60122
2Alexis LafreniereBrett Ritchie40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Bowen ByramJordan Gross60122
2Hubert LabrieLogan Day40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Alexis LafreniereJanne KuokkanenTroy TerryBowen ByramJordan Gross
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexis LafreniereJanne KuokkanenTroy TerryBowen ByramJordan Gross
Extra Forwards
Normal PowerPlayPenalty Kill
Evan Weinger, Axel Jonsson-Fjallby, Reese JohnsonEvan Weinger, Axel Jonsson-FjallbyReese Johnson
Extra Defensemen
Normal PowerPlayPenalty Kill
Thomas Hickey, Tobias Geisser, Hubert LabrieThomas HickeyTobias Geisser, Hubert Labrie
Penalty Shots
Janne Kuokkanen, Troy Terry, Alexis Lafreniere, Brett Ritchie, Frederick Gaudreau
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Binghampton Senators503001011323-102010000159-430200100814-620.200132336006888119109351263368037170564210311327.27%11554.55%0495109445.25%652140146.54%494117142.19%118955914066451340682
2Boisbriand Armada5220001029290320000102114720200000815-760.60029467500688811910184512633680371835513110418633.33%18666.67%1495109445.25%652140146.54%494117142.19%118955914066451340682
3Brampton Battalion303000001019-920200000812-41010000027-500.000101424006888119101105126336803711031555612541.67%10640.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
4Calgary Hitman31200000161422110000013761010000037-420.333162541006888119101245126336803711032527010440.00%60100.00%1495109445.25%652140146.54%494117142.19%118955914066451340682
5Chicago Wolves1010000035-2000000000001010000035-200.00036900688811910465126336803736122222150.00%10100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
6Drummondville Voltigeurs20101000111101010000045-11000100076120.500111930006888119108251263368037752736506233.33%8362.50%0495109445.25%652140146.54%494117142.19%118955914066451340682
7Grand Rapids Griffins1000000189-1000000000001000000189-110.5008132100688811910385126336803754182194250.00%10100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
8Hartford Wolf Pack11000000532110000005320000000000021.00058130068881191021512633680373310726300.00%10100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
9Lake Erie Monsters31101000141311010000024-221001000129340.66714264000688811910107512633680371304553577571.43%9277.78%0495109445.25%652140146.54%494117142.19%118955914066451340682
10Las Vegas Wranglers20200000814-61010000046-21010000048-400.0008142200688811910815126336803786305032400.00%5420.00%1495109445.25%652140146.54%494117142.19%118955914066451340682
11Laval Rockets1000010045-11000010045-10000000000010.5004711006888119102851263368037461371611100.00%10100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
12London Knights311010001215-320101000812-41100000043140.667122133006888119106051263368037114324649500.00%8275.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
13Lowell Devils64200000302823300000017107312000001318-580.6673047770068881191017151263368037239707311619631.58%14564.29%1495109445.25%652140146.54%494117142.19%118955914066451340682
14Manchester Monarchs412001001421-7311001001114-31010000037-430.37514233700688811910905126336803712949537913323.08%14564.29%0495109445.25%652140146.54%494117142.19%118955914066451340682
15Manitoba Moose1010000046-2000000000001010000046-200.0004590068881191018512633680372592325300.00%4175.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
16Peoria Riverman2010100057-22010100057-20000000000020.5005914006888119104351263368037642519294250.00%7185.71%0495109445.25%652140146.54%494117142.19%118955914066451340682
17Philadelphia Phantoms1010000034-1000000000001010000034-100.0003580068881191029512633680373911915300.00%20100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
18Portland Pirates1010000026-41010000026-40000000000000.0002460068881191015512633680372917111922100.00%3233.33%0495109445.25%652140146.54%494117142.19%118955914066451340682
19Quebec Rempart11000000633000000000001100000063321.0006111700688811910355126336803737162320200.00%4175.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
20Rimouski Oceanic10100000910-110100000910-10000000000000.0009152400688811910355126336803748358223133.33%4325.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
21Rochester Americans33000000332112110000001156220000002216661.00033558800688811910118512633680371275358556583.33%9722.22%2495109445.25%652140146.54%494117142.19%118955914066451340682
22Seattle Thunderbirds1010000029-7000000000001010000029-700.00022400688811910195126336803753144217100.00%10100.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
23Sherbrooke Phoenix30300000821-1320200000612-61010000029-700.00081220106888119105751263368037134396762400.00%11281.82%0495109445.25%652140146.54%494117142.19%118955914066451340682
24Texas Stars20100001710-30000000000020100001710-310.25071118006888119103951263368037632515406233.33%5180.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
25Toronto Marlies622001101317-431200000510-53100011087170.583131932006888119101125126336803711130351209555.56%10280.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
26Victoriaville Tigres202000001121-101010000049-510100000712-500.0001114250068881191061512633680371093185478337.50%151220.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
27Worcester Sharks1010000018-7000000000001010000018-700.0001120068881191028512633680373611824100.00%4325.00%0495109445.25%652140146.54%494117142.19%118955914066451340682
Total65173504423281352-7133101702211144160-163271802212137192-55530.408281455736106888119101844512633680372390796101212941675834.73%1867360.75%6495109445.25%652140146.54%494117142.19%118955914066451340682
_Since Last GM Reset65173504423281352-7133101702211144160-163271802212137192-55530.408281455736106888119101844512633680372390796101212941675834.73%1867360.75%6495109445.25%652140146.54%494117142.19%118955914066451340682
_Vs Conference50152603321222267-452791401111119129-102361202210103138-35440.44022235858010688811910145051263368037182758083610001324735.61%1486158.78%6495109445.25%652140146.54%494117142.19%118955914066451340682

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6553L1281455736184423907961012129410
All Games
GPWLOTWOTL SOWSOLGFGA
6517354423281352
Home Games
GPWLOTWOTL SOWSOLGFGA
3310172211144160
Visitor Games
GPWLOTWOTL SOWSOLGFGA
327182212137192
Last 10 Games
WLOTWOTL SOWSOL
270001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1675834.73%1867360.75%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
51263368037688811910
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
495109445.25%652140146.54%494117142.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
118955914066451340682


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-11-108Milwaukee Admirals4Boisbriand Armada6LBoxScore
3 - 2020-11-1223Lowell Devils2Milwaukee Admirals4WBoxScore
4 - 2020-11-1340Boisbriand Armada4Milwaukee Admirals6WBoxScore
6 - 2020-11-1555Milwaukee Admirals3Binghampton Senators4LXBoxScore
9 - 2020-11-1874Toronto Marlies1Milwaukee Admirals4WBoxScore
11 - 2020-11-2095Manchester Monarchs6Milwaukee Admirals2LBoxScore
12 - 2020-11-21102Milwaukee Admirals3Lowell Devils6LBoxScore
14 - 2020-11-23127Peoria Riverman5Milwaukee Admirals2LBoxScore
15 - 2020-11-24135Milwaukee Admirals3Binghampton Senators5LBoxScore
17 - 2020-11-26158Sherbrooke Phoenix6Milwaukee Admirals2LBoxScore
19 - 2020-11-28174Milwaukee Admirals4Texas Stars5LXXBoxScore
20 - 2020-11-29178Milwaukee Admirals3Toronto Marlies4LXBoxScore
22 - 2020-12-01196Milwaukee Admirals3Toronto Marlies2WBoxScore
23 - 2020-12-02210Toronto Marlies6Milwaukee Admirals1LBoxScore
25 - 2020-12-04228Binghampton Senators5Milwaukee Admirals4LXXBoxScore
26 - 2020-12-05236Milwaukee Admirals2Sherbrooke Phoenix9LBoxScore
29 - 2020-12-08263Lake Erie Monsters4Milwaukee Admirals2LBoxScore
31 - 2020-12-10278Milwaukee Admirals3Texas Stars5LBoxScore
33 - 2020-12-12294Manchester Monarchs1Milwaukee Admirals3WBoxScore
34 - 2020-12-13308Milwaukee Admirals2Seattle Thunderbirds9LBoxScore
36 - 2020-12-15321Milwaukee Admirals5Lake Erie Monsters3WBoxScore
38 - 2020-12-17336Victoriaville Tigres9Milwaukee Admirals4LBoxScore
40 - 2020-12-19355Boisbriand Armada5Milwaukee Admirals6WXXBoxScore
42 - 2020-12-21375Peoria Riverman2Milwaukee Admirals3WXBoxScore
43 - 2020-12-22385Milwaukee Admirals2Binghampton Senators5LBoxScore
45 - 2020-12-24402Milwaukee Admirals2Brampton Battalion7LBoxScore
46 - 2020-12-25415Portland Pirates6Milwaukee Admirals2LBoxScore
49 - 2020-12-28435Milwaukee Admirals2Toronto Marlies1WXXBoxScore
50 - 2020-12-29443Milwaukee Admirals12Rochester Americans9WBoxScore
52 - 2020-12-31459Hartford Wolf Pack3Milwaukee Admirals5WBoxScore
54 - 2021-01-02476Binghampton Senators4Milwaukee Admirals1LBoxScore
56 - 2021-01-04499Milwaukee Admirals4Manitoba Moose6LBoxScore
58 - 2021-01-06511Milwaukee Admirals4Las Vegas Wranglers8LBoxScore
59 - 2021-01-07520Toronto Marlies3Milwaukee Admirals0LBoxScore
60 - 2021-01-08538Laval Rockets5Milwaukee Admirals4LXBoxScore
62 - 2021-01-10553Milwaukee Admirals4London Knights3WBoxScore
64 - 2021-01-12571London Knights8Milwaukee Admirals3LBoxScore
66 - 2021-01-14587Milwaukee Admirals3Manchester Monarchs7LBoxScore
67 - 2021-01-15600Manchester Monarchs7Milwaukee Admirals6LXBoxScore
69 - 2021-01-17622Milwaukee Admirals7Victoriaville Tigres12LBoxScore
70 - 2021-01-18624Milwaukee Admirals7Drummondville Voltigeurs6WXBoxScore
72 - 2021-01-20643Calgary Hitman1Milwaukee Admirals9WBoxScore
74 - 2021-01-22663Milwaukee Admirals3Chicago Wolves5LBoxScore
76 - 2021-01-24676Brampton Battalion6Milwaukee Admirals4LBoxScore
78 - 2021-01-26696Milwaukee Admirals7Lake Erie Monsters6WXBoxScore
79 - 2021-01-27705Boisbriand Armada5Milwaukee Admirals9WBoxScore
80 - 2021-01-28720Milwaukee Admirals10Rochester Americans7WBoxScore
82 - 2021-01-30735Lowell Devils3Milwaukee Admirals5WBoxScore
83 - 2021-01-31752Milwaukee Admirals3Philadelphia Phantoms4LBoxScore
85 - 2021-02-02770Sherbrooke Phoenix6Milwaukee Admirals4LBoxScore
87 - 2021-02-04782Milwaukee Admirals6Lowell Devils4WBoxScore
88 - 2021-02-05798Lowell Devils5Milwaukee Admirals8WBoxScore
91 - 2021-02-08821Drummondville Voltigeurs5Milwaukee Admirals4LBoxScore
93 - 2021-02-10839Milwaukee Admirals3Calgary Hitman7LBoxScore
94 - 2021-02-11850London Knights4Milwaukee Admirals5WXBoxScore
96 - 2021-02-13866Milwaukee Admirals4Lowell Devils8LBoxScore
97 - 2021-02-14878Milwaukee Admirals6Quebec Rempart3WBoxScore
99 - 2021-02-16890Rimouski Oceanic10Milwaukee Admirals9LBoxScore
102 - 2021-02-19912Milwaukee Admirals1Worcester Sharks8LBoxScore
103 - 2021-02-20922Brampton Battalion6Milwaukee Admirals4LBoxScore
105 - 2021-02-22942Rochester Americans5Milwaukee Admirals11WBoxScore
106 - 2021-02-23953Milwaukee Admirals4Boisbriand Armada9LBoxScore
109 - 2021-02-26973Las Vegas Wranglers6Milwaukee Admirals4LBoxScore
110 - 2021-02-27989Milwaukee Admirals8Grand Rapids Griffins9LXXBoxScore
112 - 2021-03-011004Calgary Hitman6Milwaukee Admirals4LBoxScore
114 - 2021-03-031020Milwaukee Admirals-Sherbrooke Phoenix-
115 - 2021-03-041030Lowell Devils-Milwaukee Admirals-
116 - 2021-03-051045Milwaukee Admirals-Boisbriand Armada-
118 - 2021-03-071064Bridgeport Sound Tigers-Milwaukee Admirals-
120 - 2021-03-091083Milwaukee Admirals-Sherbrooke Phoenix-
121 - 2021-03-101097Victoriaville Tigres-Milwaukee Admirals-
123 - 2021-03-121115Milwaukee Admirals-Calgary Hitman-
125 - 2021-03-141126Peoria Riverman-Milwaukee Admirals-
128 - 2021-03-171151Toronto Marlies-Milwaukee Admirals-
129 - 2021-03-181166Milwaukee Admirals-Drummondville Voltigeurs-
131 - 2021-03-201182Hershey Bears-Milwaukee Admirals-
134 - 2021-03-231205Milwaukee Admirals-Drummondville Voltigeurs-
Trade Deadline --- Trades can’t be done after this day is simulated!
136 - 2021-03-251215Chicoutimi Sagueneens-Milwaukee Admirals-
137 - 2021-03-261217Milwaukee Admirals-Brampton Battalion-
139 - 2021-03-281241Binghampton Senators-Milwaukee Admirals-
141 - 2021-03-301245Milwaukee Admirals-Brampton Battalion-
143 - 2021-04-011265Milwaukee Admirals-Las Vegas Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2410
Attendance64,97332,390
Attendance PCT98.44%98.15%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
8 2950 - 98.35% 85,032$2,806,047$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,295,428$ 1,707,166$ 1,654,666$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,295,428$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
680,254$ 33 12,187$ 402,171$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT