Manchester Monarchs
GP: 67 | W: 38 | L: 24 | OTL: 5 | P: 81
GF: 356 | GA: 299 | PP%: 30.60% | PK%: 67.58%
GM : Sylvain Lemieux | Morale : 63 | Team Overall : 60
Next Games #1023 vs Manitoba Moose
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Milan LucicX100.0094887870886591734064626025828867836603214,925,000$
2Philipp Kurashev (R)XX100.007770928070708070757276565444446273660212842,501$
3Egor SharangovichX100.008073977573747970646671665444446380650221775,833$
4Vladimir SobotkaXX100.0081449179656761577261578225717466766403312,425,000$
5Alexandre Texier (R)XX100.006742908371636764426570602547476970620212897,500$
6Mason AppletonXXX100.006342878072588060365760712555556476620252758,000$
7Tom Kuhnhackl (C)XX100.007644977773595658256060742560636567620291850,000$
8Mark LetestuXX100.006341997069575757815055807371736258610361925,000$
9Brandon Hagel (R)X100.006863817263788465506659585944446283610221880,833$
10Dmytro TimashovXX100.008645886769527559256059702557576480600241694,444$
11Connor BunnamanXX100.007944967075687358565855612545455981590232736,666$
12Lukas JasekXX100.007468886168717558505161635844446384580232853,333$
13Nicolas Hague (R)X100.008346767882698466256048562547476177630222791,668$
14Ilya LyubushkinX99.009547897076646462254747672555555980630271874,125$
15Karl Alzner (A)X100.0082808667806266512541397337757854726303223,550,000$
16Brad HuntX100.005940967765666876255456612563636324620321700,000$
17Nick SeelerX100.008194666677586354254747712555565886610271725,000$
18Cameron SchillingX100.007469866469727854254842644055555654600321700,000$
Scratches
1Joona Luoto (R)XX100.006742957370466452255055722545456020560232741,667$
2Kirill Maksimov (R)X100.007877816777697550504747634544445617550212775,000$
3Louie Belpedio (R)X100.006569566469768349254241563944445224560241700,000$
4Brady Keeper (R)X100.006672536872626648253942564044445119540241500,001$
5Jake Christiansen (R)X100.007971995871545841252839613744444920530213925,000$
TEAM AVERAGE99.96766086717264725940545465365454606161
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram100.00696480767071727773733044447052680
2Scott Wedgewood98.00526784764855505751513054545479560
Scratches
1Jonas Johansson100.00646072846667637067673044444923640
2Jakub Skarek (R)100.00495265794748505448483044445020520
TEAM AVERAGE99.5059617579586059656060304747564460
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeremy Colliton82848484534990CAN353120,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Milan LucicManchester Monarchs (NSH)LW676771138501911151357631710020221.14%40127519.041022323114310112312446.02%1136319052.160265128412
2Mason AppletonManchester Monarchs (NSH)C/LW/RW67505810849291585802848116717.61%45125218.6914102431146000192245.26%956341011.7300120896
3Egor SharangovichManchester Monarchs (NSH)C673664100311137587126152409223.68%43126218.8591524171450001296155.66%15722724021.5823555534
4Alexandre TexierManchester Monarchs (NSH)C/LW6228487614191589612276814412.33%21101516.38381118107000062119.05%638019001.5001111076
5Philipp KurashevManchester Monarchs (NSH)C/LW632445691738308389154599915.58%2095815.2247118830005352356.80%8823423011.4402312522
6Nicolas HagueManchester Monarchs (NSH)D671138492266101438811547589.57%71168425.15561191660004112100.00%03951000.5800011032
7Vladimir SobotkaManchester Monarchs (NSH)C/LW67192746915579113156629712.18%4694914.170000301101442052.93%7163929000.9711010132
8Tom KuhnhacklManchester Monarchs (NSH)LW/RW5923234612008195173369113.29%2492015.602247650007691233.33%394623101.0000000312
9Ilya LyubushkinManchester Monarchs (NSH)D67935441933513211310040499.00%126172625.775611111630002110000.00%01563000.5100001211
10Dmytro TimashovManchester Monarchs (NSH)LW/RW671628441215510282128419412.50%41102615.3305515000021151132.47%772834000.8600001112
11Brandon HagelManchester Monarchs (NSH)LW67161935-570308268136488311.76%2797814.610222320112590144.44%452714000.7236213011
12Cameron SchillingManchester Monarchs (NSH)D613293221742095957935323.80%113157025.7525791300001109100.00%01653000.4100112120
13Karl AlznerManchester Monarchs (NSH)D6712930351611151121209354311.08%112150422.4603321020001142000.00%01164000.4000689121
14Mark LetestuManchester Monarchs (NSH)C/RW55111324-41010537274235914.86%2378914.353366500000262156.94%721616000.6111002012
15Lukas JasekManchester Monarchs (NSH)C/RW62131023-63325625075295617.33%1363910.3201107000043034.78%232411000.7213203011
16Connor BunnamanManchester Monarchs (NSH)C/LW6312921-475503378215515.38%55689.0200000000001045.57%79165000.7400001010
17Nick SeelerManchester Monarchs (NSH)D672171923282130119875834403.45%94129719.37101372000283000.00%01948100.290010412000
18Brad HuntManchester Monarchs (NSH)D40313166005283624248.33%3561015.25000014000228010.00%0916000.5200000000
19Jordan WealPredatorsC/LW/RW454980049208525.00%08822.01000310000030050.00%12262002.0401000100
20Joona LuotoManchester Monarchs (NSH)LW/RW15044-13006815490.00%71379.150000000000000.00%634000.5800000000
21Kirill MaksimovManchester Monarchs (NSH)RW6000-51210130130.00%36510.9200000000000020.00%513000.0000002000
22Brady KeeperManchester Monarchs (NSH)D18000-21151989160.00%822712.650000100001000.00%012000.0000010000
23Louie BelpedioManchester Monarchs (NSH)D24000323152162180.00%1030812.850000000001000.00%008000.0000012000
Team Total or Average12023495849332921202640164515102481857150414.07%9272085917.3558951531581501123311116361752.88%3909583572290.89820373259364244
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Scott WedgewoodManchester Monarchs (NSH)42261120.8894.212352001651482907310.700104126002
2Connor IngramManchester Monarchs (NSH)114500.8934.295450039366188000.0000720000
3Jonas JohanssonManchester Monarchs (NSH)113600.8604.855570045322169021.000399000
4Michael HutchinsonPredators33000.9024.22185001313371001.0002311000
Team Total or Average67362220.8864.3236410026223031335330.800156066002


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexandre TexierManchester Monarchs (NSH)C/LW211999-09-13 06:08:55Yes192 Lbs6 ft1NoNoNo2Pro & Farm897,500$0$0$No897,500$Link
Brad HuntManchester Monarchs (NSH)D321988-08-23No187 Lbs5 ft9NoNoNo1Pro & Farm700,000$0$0$NoLink
Brady KeeperManchester Monarchs (NSH)D241996-06-05Yes194 Lbs6 ft2NoNoNo1Pro & Farm500,001$0$0$NoLink
Brandon HagelManchester Monarchs (NSH)LW221998-08-26Yes174 Lbs5 ft11NoNoNo1Pro & Farm880,833$0$0$NoLink
Cameron SchillingManchester Monarchs (NSH)D321988-10-07No182 Lbs6 ft2NoNoNo1Pro & Farm700,000$0$0$NoLink
Connor BunnamanManchester Monarchs (NSH)C/LW231998-04-16No207 Lbs6 ft1NoNoNo2Pro & Farm736,666$0$0$No736,666$Link
Connor IngramManchester Monarchs (NSH)G241997-03-31No204 Lbs6 ft1NoNoNo3Pro & Farm759,167$0$0$No759,167$759,167$Link
Dmytro TimashovManchester Monarchs (NSH)LW/RW241996-09-30No195 Lbs5 ft10NoNoNo1Pro & Farm694,444$0$0$NoLink
Egor SharangovichManchester Monarchs (NSH)C221998-06-06No196 Lbs6 ft2NoNoNo1Pro & Farm775,833$0$0$NoLink
Ilya LyubushkinManchester Monarchs (NSH)D271994-04-06No209 Lbs6 ft2NoNoNo1Pro & Farm874,125$0$0$NoLink
Jake ChristiansenManchester Monarchs (NSH)D211999-09-12Yes194 Lbs6 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Jakub SkarekManchester Monarchs (NSH)G211999-11-10Yes196 Lbs6 ft3NoNoNo3Pro & Farm778,333$0$0$No778,333$778,333$
Jonas JohanssonManchester Monarchs (NSH)G251995-09-18No206 Lbs6 ft4NoNoNo1Pro & Farm925,000$0$0$NoLink
Joona LuotoManchester Monarchs (NSH)LW/RW231997-09-26Yes185 Lbs6 ft2NoNoNo2Pro & Farm741,667$0$0$No741,667$Link
Karl Alzner (1 Way Contract)Manchester Monarchs (NSH)D321988-09-24No217 Lbs6 ft3NoNoNo2Farm Only3,550,000$3,550,000$899,333$No4,625,000$Link
Kirill MaksimovManchester Monarchs (NSH)RW211999-06-01Yes207 Lbs6 ft3NoNoNo2Pro & Farm775,000$0$0$No775,000$
Louie BelpedioManchester Monarchs (NSH)D241996-05-14Yes193 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLink
Lukas JasekManchester Monarchs (NSH)C/RW231997-08-28No183 Lbs6 ft1NoNoNo2Pro & Farm853,333$0$0$No853,333$Link
Mark Letestu (1 Way Contract)Manchester Monarchs (NSH)C/RW361985-02-03No195 Lbs5 ft10NoNoNo1Farm Only925,000$925,000$234,333$NoLink
Mason AppletonManchester Monarchs (NSH)C/LW/RW251996-01-15No193 Lbs6 ft2NoNoNo2Pro & Farm758,000$0$0$No900,000$Link
Milan Lucic (1 Way Contract)Manchester Monarchs (NSH)LW321988-06-06No236 Lbs6 ft3NoNoNo1Farm Only4,925,000$4,925,000$1,247,667$NoLink
Nick SeelerManchester Monarchs (NSH)D271993-06-02No200 Lbs6 ft2NoNoNo1Pro & Farm725,000$0$0$NoLink
Nicolas HagueManchester Monarchs (NSH)D221998-12-05Yes214 Lbs6 ft6NoNoNo2Pro & Farm791,668$0$0$No791,668$Link
Philipp KurashevManchester Monarchs (NSH)C/LW211999-10-12Yes192 Lbs6 ft0NoNoNo2Pro & Farm842,501$0$0$No842,501$
Scott WedgewoodManchester Monarchs (NSH)G281992-08-14No195 Lbs6 ft2YesNoNo1Pro & Farm1,400,000$0$0$NoLink
Tom KuhnhacklManchester Monarchs (NSH)LW/RW291992-01-21No196 Lbs6 ft2NoNoNo1Pro & Farm850,000$0$0$NoLink
Vladimir Sobotka (1 Way Contract)Manchester Monarchs (NSH)C/LW331987-07-02No184 Lbs5 ft10NoNoNo1Farm Only2,425,000$2,425,000$614,333$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2725.70197 Lbs6 ft11.561,126,262$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicEgor SharangovichMason Appleton34122
2Alexandre TexierPhilipp KurashevBrandon Hagel31122
3Tom KuhnhacklVladimir SobotkaDmytro Timashov21131
4Connor BunnamanMark LetestuLukas Jasek14140
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin41131
2Karl AlznerCameron Schilling39131
3Nick SeelerBrad Hunt20140
4Karl AlznerNick Seeler0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicEgor SharangovichMason Appleton65104
2Alexandre TexierPhilipp KurashevBrandon Hagel35104
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin60113
2Karl AlznerCameron Schilling40113
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Vladimir SobotkaDmytro Timashov60140
2Mark LetestuTom Kuhnhackl40140
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl AlznerCameron Schilling55140
2Nicolas HagueIlya Lyubushkin45140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Vladimir Sobotka60050Karl AlznerCameron Schilling60140
2Mark Letestu40050Nicolas HagueIlya Lyubushkin40140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Egor SharangovichMilan Lucic60113
2Philipp KurashevAlexandre Texier40113
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin55122
2Nick SeelerBrad Hunt45131
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Milan LucicPhilipp KurashevMason AppletonNicolas HagueIlya Lyubushkin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Milan LucicPhilipp KurashevMason AppletonKarl AlznerCameron Schilling
Extra Forwards
Normal PowerPlayPenalty Kill
Egor Sharangovich, Dmytro Timashov, Milan LucicDmytro Timashov, Milan LucicBrandon Hagel
Extra Defensemen
Normal PowerPlayPenalty Kill
Karl Alzner, Ilya Lyubushkin, Nicolas HagueBrad HuntNicolas Hague, Karl Alzner
Penalty Shots
Brandon Hagel, Lukas Jasek, Egor Sharangovich, Philipp Kurashev, Karl Alzner
Goalie
#1 : Scott Wedgewood, #2 : Connor Ingram


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Binghampton Senators2100100017892100100017890000000000041.0001728450080155112128176983983936672860355240.00%5260.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
2Boisbriand Armada3300000016106110000007612200000094561.00016274300801551121210776983983936103587759700.00%6183.33%0750141053.19%769143453.63%645125151.56%141978313896311263629
3Brampton Battalion3110100012120110000005322010100079-240.667121628008015511212110769839839361142934649111.11%7185.71%0750141053.19%769143453.63%645125151.56%141978313896311263629
4Bridgeport Sound Tigers301000201314-12000002011921010000025-340.667132033008015511212116769839839361224627729222.22%6266.67%0750141053.19%769143453.63%645125151.56%141978313896311263629
5Calgary Hitman312000001516-11010000068-22110000098120.3331525401080155112121237698398393611628337410440.00%9455.56%0750141053.19%769143453.63%645125151.56%141978313896311263629
6Chicago Wolves1010000057-21010000057-20000000000000.0005712008015511212357698398393638102242150.00%110.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
7Chicoutimi Sagueneens33000000241014000000000003300000024101461.000244165008015511212127769839839369230307211218.18%10280.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
8Drummondville Voltigeurs43000001201281000000123-133000000189970.8752035550080155112121387698398393614754698811327.27%13284.62%0750141053.19%769143453.63%645125151.56%141978313896311263629
9Grand Rapids Griffins10001000981000000000001000100098121.00091524008015511212417698398393657118203266.67%4250.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
10Hartford Wolf Pack11000000734000000000001100000073421.00071320008015511212487698398393635819305240.00%2150.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
11Hershey Bears1010000046-2000000000001010000046-200.000459008015511212407698398393648162922200.00%20100.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
12Lake Erie Monsters21100000111011010000058-31100000062420.5001118290080155112125776983983936914566476350.00%8275.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
13Las Vegas Wranglers20100001711-41000000134-11010000047-310.25071118008015511212567698398393690364337200.00%40100.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
14Laval Rockets1010000035-21010000035-20000000000000.000369008015511212377698398393638172028200.00%5260.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
15London Knights312000001618-211000000104620200000614-820.333162339008015511212123769839839361135076677228.57%8625.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
16Lowell Devils1010000047-3000000000001010000047-300.000471100801551121241769839839363385285120.00%000.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
17Milwaukee Admirals421010002114711000000734311010001411360.7502134551080155112121297698398393690297112714535.71%13376.92%1750141053.19%769143453.63%645125151.56%141978313896311263629
18Philadelphia Phantoms10000010541100000105410000000000021.00056110080155112124176983983936451518262150.00%4175.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
19Portland Pirates403000101522-720200000612-620100010910-120.2501523380080155112121557698398393615549429712541.67%16568.75%0750141053.19%769143453.63%645125151.56%141978313896311263629
20Quebec Rempart1010000036-31010000036-30000000000000.000347008015511212327698398393639129245240.00%20100.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
21Rimouski Oceanic22000000166101100000054111000000112941.0001621370080155112127876983983936842826437228.57%30100.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
22Rochester Americans642000003523123210000019127321000001611580.667356095008015511212202769839839362297915616819315.79%13746.15%0750141053.19%769143453.63%645125151.56%141978313896311263629
23Seattle Thunderbirds1010000035-21010000035-20000000000000.0003690080155112123676983983936431623272150.00%4175.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
24Sherbrooke Phoenix31200000131302110000010911010000034-120.333132134108015511212111769839839361114136918450.00%8450.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
25Texas Stars1010000014-31010000014-30000000000000.0001230080155112124876983983936371793011100.00%20100.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
26Toronto Marlies330000002171422000000155101100000062461.0002134550080155112129676983983936621691785120.00%8362.50%0750141053.19%769143453.63%645125151.56%141978313896311263629
27Victoriaville Tigres62100102373613100010120164311000011720-370.58337599600801551121222376983983936283747510512650.00%15660.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
28Worcester Sharks10001000321100010003210000000000021.000358008015511212337698398393638121328000.00%4175.00%0750141053.19%769143453.63%645125151.56%141978313896311263629
Total672924051443562995732121102133171147243517130301118515233810.6043565729283080155112122464769839839362520862116716111835630.60%1825967.58%1750141053.19%769143453.63%645125151.56%141978313896311263629
_Since Last GM Reset672924051443562995732121102133171147243517130301118515233810.6043565729283080155112122464769839839362520862116716111835630.60%1825967.58%1750141053.19%769143453.63%645125151.56%141978313896311263629
_Vs Conference4523140310424519748201140110312689372512100200111910811570.633245398643308015511212159776983983936164957589210681203529.17%1174164.96%1750141053.19%769143453.63%645125151.56%141978313896311263629
_Vs Division2110401103123972610410010252466116301001715120260.61912319531800801551121277276983983936804250327460511631.37%611870.49%0750141053.19%769143453.63%645125151.56%141978313896311263629

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6781W1356572928246425208621167161130
All Games
GPWLOTWOTL SOWSOLGFGA
6729245144356299
Home Games
GPWLOTWOTL SOWSOLGFGA
3212112133171147
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3517133011185152
Last 10 Games
WLOTWOTL SOWSOL
541000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1835630.60%1825967.58%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
769839839368015511212
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
750141053.19%769143453.63%645125151.56%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
141978313896311263629


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-11-109Manchester Monarchs9Rochester Americans5WBoxScore
2 - 2020-11-1119Rochester Americans6Manchester Monarchs3LBoxScore
4 - 2020-11-1336Drummondville Voltigeurs3Manchester Monarchs2LXXBoxScore
7 - 2020-11-1659Manchester Monarchs6Drummondville Voltigeurs2WBoxScore
8 - 2020-11-1768Brampton Battalion3Manchester Monarchs5WBoxScore
10 - 2020-11-1982Manchester Monarchs5Rochester Americans2WBoxScore
11 - 2020-11-2095Manchester Monarchs6Milwaukee Admirals2WBoxScore
13 - 2020-11-22109Manchester Monarchs7Chicoutimi Sagueneens5WBoxScore
14 - 2020-11-23121Las Vegas Wranglers4Manchester Monarchs3LXXBoxScore
15 - 2020-11-24137Manchester Monarchs5Victoriaville Tigres6LXXBoxScore
17 - 2020-11-26152Victoriaville Tigres5Manchester Monarchs4LXXBoxScore
18 - 2020-11-27165Manchester Monarchs3Brampton Battalion6LBoxScore
21 - 2020-11-30185Rochester Americans2Manchester Monarchs5WBoxScore
22 - 2020-12-01202Manchester Monarchs5Boisbriand Armada3WBoxScore
23 - 2020-12-02213Bridgeport Sound Tigers4Manchester Monarchs5WXXBoxScore
26 - 2020-12-05234Victoriaville Tigres5Manchester Monarchs4LXBoxScore
28 - 2020-12-07252Manchester Monarchs5Victoriaville Tigres9LBoxScore
29 - 2020-12-08264Victoriaville Tigres6Manchester Monarchs12WBoxScore
31 - 2020-12-10283Manchester Monarchs2Calgary Hitman4LBoxScore
33 - 2020-12-12294Manchester Monarchs1Milwaukee Admirals3LBoxScore
34 - 2020-12-13307Boisbriand Armada6Manchester Monarchs7WBoxScore
36 - 2020-12-15325London Knights4Manchester Monarchs10WBoxScore
38 - 2020-12-17340Manchester Monarchs2Bridgeport Sound Tigers5LBoxScore
40 - 2020-12-19359Portland Pirates7Manchester Monarchs3LBoxScore
42 - 2020-12-21374Manchester Monarchs7Hartford Wolf Pack3WBoxScore
43 - 2020-12-22387Manchester Monarchs5Portland Pirates4WXXBoxScore
44 - 2020-12-23399Texas Stars4Manchester Monarchs1LBoxScore
47 - 2020-12-26422Rimouski Oceanic4Manchester Monarchs5WBoxScore
49 - 2020-12-28438Manchester Monarchs7Calgary Hitman4WBoxScore
50 - 2020-12-29444Manchester Monarchs4Lowell Devils7LBoxScore
52 - 2020-12-31463Bridgeport Sound Tigers5Manchester Monarchs6WXXBoxScore
54 - 2021-01-02478Manchester Monarchs4Las Vegas Wranglers7LBoxScore
56 - 2021-01-04494Philadelphia Phantoms4Manchester Monarchs5WXXBoxScore
58 - 2021-01-06514Seattle Thunderbirds5Manchester Monarchs3LBoxScore
59 - 2021-01-07523Manchester Monarchs2London Knights7LBoxScore
61 - 2021-01-09540Manchester Monarchs4Portland Pirates6LBoxScore
62 - 2021-01-10552Rochester Americans4Manchester Monarchs11WBoxScore
64 - 2021-01-12569Manchester Monarchs4Brampton Battalion3WXBoxScore
66 - 2021-01-14587Milwaukee Admirals3Manchester Monarchs7WBoxScore
67 - 2021-01-15600Manchester Monarchs7Milwaukee Admirals6WXBoxScore
69 - 2021-01-17616Laval Rockets5Manchester Monarchs3LBoxScore
71 - 2021-01-19636Sherbrooke Phoenix3Manchester Monarchs5WBoxScore
72 - 2021-01-20646Manchester Monarchs6Drummondville Voltigeurs4WBoxScore
75 - 2021-01-23667Manchester Monarchs3Sherbrooke Phoenix4LBoxScore
76 - 2021-01-24677Binghampton Senators6Manchester Monarchs7WXBoxScore
78 - 2021-01-26694Manchester Monarchs7Victoriaville Tigres5WBoxScore
79 - 2021-01-27709Manchester Monarchs4London Knights7LBoxScore
80 - 2021-01-28714Toronto Marlies1Manchester Monarchs7WBoxScore
82 - 2021-01-30739Binghampton Senators2Manchester Monarchs10WBoxScore
84 - 2021-02-01760Calgary Hitman8Manchester Monarchs6LBoxScore
85 - 2021-02-02773Manchester Monarchs6Drummondville Voltigeurs3WBoxScore
88 - 2021-02-05791Worcester Sharks2Manchester Monarchs3WXBoxScore
89 - 2021-02-06806Manchester Monarchs7Chicoutimi Sagueneens2WBoxScore
90 - 2021-02-07815Manchester Monarchs4Hershey Bears6LBoxScore
92 - 2021-02-09834Lake Erie Monsters8Manchester Monarchs5LBoxScore
93 - 2021-02-10843Manchester Monarchs4Boisbriand Armada1WBoxScore
95 - 2021-02-12861Chicago Wolves7Manchester Monarchs5LBoxScore
98 - 2021-02-15880Manchester Monarchs9Grand Rapids Griffins8WXBoxScore
99 - 2021-02-16888Manchester Monarchs2Rochester Americans4LBoxScore
100 - 2021-02-17899Portland Pirates5Manchester Monarchs3LBoxScore
103 - 2021-02-20921Manchester Monarchs10Chicoutimi Sagueneens3WBoxScore
104 - 2021-02-21929Toronto Marlies4Manchester Monarchs8WBoxScore
106 - 2021-02-23952Manchester Monarchs6Toronto Marlies2WBoxScore
107 - 2021-02-24960Quebec Rempart6Manchester Monarchs3LBoxScore
110 - 2021-02-27984Manchester Monarchs11Rimouski Oceanic2WBoxScore
111 - 2021-02-28991Sherbrooke Phoenix6Manchester Monarchs5LBoxScore
112 - 2021-03-011002Manchester Monarchs6Lake Erie Monsters2WBoxScore
114 - 2021-03-031023Manitoba Moose-Manchester Monarchs-
116 - 2021-03-051047Manchester Monarchs-Peoria Riverman-
117 - 2021-03-061050Manchester Monarchs-Rochester Americans-
118 - 2021-03-071060Drummondville Voltigeurs-Manchester Monarchs-
120 - 2021-03-091084Brampton Battalion-Manchester Monarchs-
122 - 2021-03-111100Manchester Monarchs-Brampton Battalion-
123 - 2021-03-121114Las Vegas Wranglers-Manchester Monarchs-
127 - 2021-03-161144Drummondville Voltigeurs-Manchester Monarchs-
129 - 2021-03-181167Rochester Americans-Manchester Monarchs-
130 - 2021-03-191175Manchester Monarchs-Seattle Thunderbirds-
132 - 2021-03-211191Manchester Monarchs-Binghampton Senators-
134 - 2021-03-231203Manchester Monarchs-Lake Erie Monsters-
135 - 2021-03-241209Brampton Battalion-Manchester Monarchs-
Trade Deadline --- Trades can’t be done after this day is simulated!
139 - 2021-03-281240Lowell Devils-Manchester Monarchs-
142 - 2021-03-311257Lowell Devils-Manchester Monarchs-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3012
Attendance60,76930,790
Attendance PCT94.95%96.22%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
9 2861 - 95.37% 102,545$3,281,445$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,544,241$ 1,858,407$ 1,858,407$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,544,241$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
922,906$ 33 13,644$ 450,252$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT